

HOW DO COMPUTED ONTOLOGY MAPPINGS EVOLVE? A CASE STUDY FOR LIFE SCIENCE ONTOLOGIES

Anika Gross, Michael Hartung, Andreas Thor, Erhard Rahm

UNIVERSITÄT LEIPZIG

12TH NOVEMBER 2012, EVODYN WORKSHOP, BOSTON

ONTOLOGIES AND ONTOLOGY MAPPINGS

Ontologies

- Knowledge representation
- Multiple interrelated ontologies in a domain

SNOMED NCI Thesaurus MeSH UMLS GALEN

Ontology mapping

- Set of semantic correspondences between concepts of different ontologies
- Manual identification or (semi-) automatic matching approaches

Use of mappings

- Ontology merging creation of the integrated cross-species anatomy ontology "Uber ontology"
- Knowledge transfer experiments for different species
- Ontology curation find missing ontology annotations

•

ONTOLOGY EVOLUTION

- Ongoing research, new findings \rightarrow continuous modifications
- Periodical release of new ontology versions
- Ontology changes

Invalidate previously determined ontology mappings?

ONTOLOGY EVOLUTION

- Ongoing research, new findings → continuous modifications
- Periodical release of new ontology versions
- Ontology changes

- Invalidate previously determined ontology mappings?
- Example: Anatomy reference mapping at OAEI *
 - Based on 5 year old versions
 - Quality w.r.t. current ontology versions?
- · Re-determination of mappings is an expensive process
 - Manual verification of correspondences
 - Parametrization effort
- Future aim: (semi-)automatic mapping adaptation

CONTRIBUTIONS

- Investigate evolution of life science ontology mappings
- Generic model for ontology and mapping evolution and their inter-dependencies
- Evaluation for three life science scenarios

GENERAL EVOLUTION SCHEME

- * Hartung, M.; Groß, A.; Rahm, E.:
 - **COnto-Diff**: Generation of Complex Evolution Mappings for Life Science Ontologies, Journal of Biomedical Informatics, 2012.
 - **CODEX**: Exploration of semantic changes between ontology versions, Bioinformatics 28 (6): 895-896, 2012.

CHANGE OPERATIONS

Ontology changes:

Extension set:

Ext(O_{v→v+1})
Insert new concept,
subgraph, relationship,
attribute,

Reduction set:

 $Red(O_{v \to v+1})$

Delete existing concept, subgraph, relationship, set concept to obsolete,

. .

Revision set:

 $Rev(O_{v
ightarrow v+1})$ Split, merge, substitute, move concept, change attribute value,

Mapping changes:

• Addition set: $Add(M_{v\to v+1}) = M_{v+1}\backslash M_v$

• Deletion set: $Del(M_{v \to v+1}) = M_v \setminus M_{v+1}$

MEASURES

Ontology Change Ratio $OCR(O_{v \rightarrow v+1})$

- Degree of ontology changes during evolution from O_v to O_{v+1}
- Fraction of concepts in $Ext \cup Red \cup Rev$ versus all concepts $(O_v \cup O_{v+1})$

Mapping Change Ratio $MCR(M_{v \rightarrow v+1})$

- Degree of mapping changes during evolution from M_v to M_{v+1}
- Fraction of correspondence in $Add \cup Del$ versus all correspondences $(M_v \cup M_{v+1})$

MEASURES

Impact Ratio $IR(O_{Ch}, M_{Ch})$

- Share of changed concepts that actually had an impact on changed correspondences
- For instance, fraction of additive ontology changes that led to new correspondences: IR(Ext, Add)

	Mapping	ADD	DEL		
		$\{(b_1,b_2),$	{(b ₁ ,c ₂),		
Onto	logies	(f_1, f_2)	$d_1,d_2)$		
EXT	$\{f_1, g_1\} \cup \{f_2\}$	2/3	0		
RED	$\emptyset \cup \{d_2\}$	0	1		
REV	$\{b_1\}\cup \{e_2\}$	1/2	1/2		

EVALUATION SETUP

Meta-data based matchers

ONTOLOGY AND MAPPING GROWTH

- Slight ontology growth for Anatomy (10%)
- 60-70% for MolecularBiology and Chemistry
- Mapping growth similar to ontology growth, except for chemistry

ONTOLOGY CHANGE RATIO

Heavy changes for Molecular Biology (nearly 40%)

Chemistry
OCR around
20%

Mapping Changes

More correspondence additions + High degree of deletions

CHANGE RATIOS

CHANGE RATIOS

Anatomy: few mapping changes, relatively stable

MolecularBiology, Chemistry: high degree of mapping changes (10 - 80 %)

Correlation between ontology and mapping change factors

Different stability for different matchers
Name: relatively stable
Context: most unstable

IMPACT OF ONTOLOGY CHANGES ON MAPPING CHANGES

	Ext	IR _{Ext}		Red	IR _{Red}		Rev	IR _{Rev}	
		→Add	→Del	Kea	→Add	→Del	IVEA	→Add	→Del
Anatomy	95	18.7%	0.1%	7	0.0%	7.8%	89	6.8%	4.1%
Molecular Biology	2,359	4.6%	0.7%	223	2.4%	8.8%	2,209	3.5%	2.1%
Chemistry	8,377	11.7%	1.2%	366	3.5%	5.3%	6,441	8.1%	4.0%

Most correspondence additions are caused by ontology extensions

Most correspondence deletions are caused by ontology reductions

Surprisingly high degree of mapping changes caused by ontology revisions

CONCLUSIONS & FUTURE WORK

- Study the evolution of ontology mappings
 - General evolution scheme and measures (change factors)
- Evaluation for ontology mappings in three life science domains
 - + comparison of three match strategies

- Correlation between ontology and mapping change factors
- Different stability for different match techniques and domains
- Impact of ontology on mapping changes
 - Most correspondence Add / Del are caused by ontology Ext / Red
 - Surprisingly high degree of mapping changes caused by ontology Rev

Future Work

 Use known ontology changes to semi-automatically adapt ontology mappings (without completely new mapping determination)

How do Computed Ontology Mappings Evolve? A Case Study for Life Science Ontologies

Funding: German Research Foundation Grant RA497/18-1 "EVOLUTION OF ONTOLOGIES AND MAPPINGS"